Resilient Distributed Datasets

A fault tolerant abstraction for in-memory cluster
computing

By: Vinod Dalavai Department of Computer Science
Date: Feb 16, 2022 Golisano College of Computing and Information Sciences
Rochester Institute of Technology, NY

RDD

Resilient - meaning, fault tolerant. Can recompute in the event of a
network partition

Distributed - meaning, it resides in multiple nodes

Dataset - meaning, records of data with which programmers will work

Solves the problem of iterative algorithms and interactive data mining
tools that current computing frameworks handle inefficiently by keeping
data in-memory

Limitations of existing approaches

Hadoop’s MapReduce simplified “big data”
analysis by performing parallel computations
on data while being fault tolerant.

But, users wanted more. More complex
iterative algorithms and interactive ad-hoc
queries

Hence, specialized frameworks such as
Pregel and HaLoop were introduced that
kept intermediate data in-memory.

But they were narrow focussed and not for
more general reuse of data. eg) let a user
load several datasets and run ad-hoc queries
on the same subset of data

There was a need for efficient primitives for
data sharing.

HDFS HDFS HDFS HDFS
read write read write
Input
HDFS query result 1
read
querv result 2

Input

result 3

one-time

processing

Input

query 1

query 2

query

Jes

Existing storage abstractions have interfaces based on fine-grained
updates to mutable state. For instance, DSM, Piccolo, key-value stores

Require replicating data or logs across multiple nodes for fault tolerance
» Expensive operations to write large amounts of data or logs
 Limited by network bandwidth

« Much slower compared to memory write

, -(I)DS

Restricted form of DSM

Immutable and partitioned collection of records

Can only be built through coarse-grained deterministic transformations
Uses lineage for efficient fault recovery

In case of a failure, recompute only the lost partitions

Can be used to apply the same operation to many items

Trade-off Space

Network Memory
. bandwidth bandwidth

Fine , ,

K-V stores, : Best for :

databases, @.» — transactional :

_ RAMCloud | workloads :

Granularity : I
of Updates | ' Best for batch

| ,'l] workloads
HDFS @ | RDDs @
Coarse E i

Low High
Write Throughput

6

park

The concept of RDD is implemented in Spark as a language-integrated API

Dataset is represented as an object and transformations are invoked on
these objects

Usable interactively from Scala interpreter
Provides:

« Operations on RDDs: transformations(create new RDDs) and
actions(compute and output results on the RDDs)

« Control of each RDD’s partitioning (layout across multiple nodes) and
persistence (storage in RAM, on disk, etc)

Iion

Implemented Spark in 14000 lines of Scala.

System runs over Mesos cluster manager and shares resources
with Hadoop and other applications

Each Spark application runs as a separate Mesos application with
its own driver and workers

Spark can read data from any DFS such as HBase, Hadoop etc.

senting RDDs

- RDD can be represented through a common interface that exposes five
pieces of information:

partitions() atomic pieces of the dataset

List nodes where partition p can be accessed

preferredLocations(p) foster

dependencies() set of dependencies on the parent RDD

function for computing the dataset of p

iterator(p, parentlters) based on parents

Return metadata specifying whether the RDD

partitioner() is hash/range partitioned

Types of dependencies

Narrow dependencies: Wide dependencies:
Each partition of the parent RDD is used Each partition of the parent RDD may be
by at most one partition of the child RDD. depended on by multiple child partitions.

map, filter

groupByKey
join
with
join with union 1”?Ut5tﬁg?)
co-partitioned inputs Co-partitione

10

Lineage & Directed Acyclic Graph (DAG)

()

o ———————————————3 UMt the code (jar files) and configured A e T R R R
dependencies to Executors for further execution :

Driver Program
Request for worker Cluster Manager

.................) nodeS/EXGCUters
in the cluster

Executer

: SparkContext Executer
: DAG Scheduler Task Scheduler
Stage 28 Stage 29 Stage 30 :
[RDD1 RDD2
paralleize groupBy repartition I .

| N
| RDD
| |
I RDD " Executer

: | * '
l

: | |
v Submit the code (jar files) and configured oo >

dependencies to Executors for further execution

i

Cil |Ce

» Lineages are key to fault tolerance in Spark
« Three other properties required to deliver fault tolerance:
« I[mmutability of RDDs

» Usage of higher order functions such as map, filter, flatMap to perform
functional transformations on this immutable data

» Function for computing the dataset based on parent RDD

» Along with keeping track of dependency information between partitions
and the three properties mentioned above allow us to recover from
failures by recomputing lost partitions from lineage graphs

12

SN\
CLLJG @[[I B
-0 @muo

L

O

&)

SN
N ///
\\ .m/////////
SERNNNNY

@i Gann
(IAN

Fault Tolerance (Contd..)

c
o
)

> -
@
o =

1094
,r.v%» 18- @8-
-

<

9

13

End To End Flow of Data in Spark

.master("local")

l SparkSession spark = SparkSession.builder()
.getOrCreate();

.appName ("' CSV to DB")
lliiaHHilll

14

- EEEEEEEEEE-

Worker 1

FPartition 1

Fartition 2

Dataset<Row> df = spark.read()
. format("csv")
.option("header", "true")
. load("data/authors.csv");

EW orker 2 B Partition 1 REE
' | Partition 2 1l

15

Worker 3

FPartition 1

Fartition 2

- - - - " " " " """ BRSO E RS --s

Pierre Sylvain

g
-
O
—
0
e
o

voltaire
Maréchal

AR R R R R R R R N ENOTERTTRERTTETERETEET

16

000000000000000000

Memory

Partition 1
Partition 2

Record 3
Record 4
Record 5
Record 6
Record 7

R

sesssscsscssssssadenas,
Memory

.................q....‘

¢ ..‘....‘...........p.....

Memory

!

Ingestion
-G

‘....‘.................

FPartition

%...'.....-..........‘
AR R R R R R R T T .-

P I . I .
P Y TR N
N ‘S
. N fa
N - ~— '
. — ~ o
M - - f
. — m ﬁ.
1] 49 — L]
= DMu "
- L]
: S x
- 2 e
g VT rrrscinn o
. o "o
LR]
D - = "
. '
o
—_ - ~r
L]
- +
N o
'
. H
S e —— \..

\J

17

- EEEEEEEEEEREEREEEREEEEEEEEREEEEEEE R N

O
L
-
O
e

c

col("fname")));

0 e Dl

col("lname"), Lit("

concat(df.

df = df.withColumn(
"name" ,

o
O
| -
O
O
C
c

Francois

Jean Georges

Marechal

Flerre Sylvain

HRecord 5

Hecord 6

HRecord /

.

1

” - - N | - N
g C 2) o = 0 O
v B - D - = @ @
Q) m m o " R R
r - - ()

> B o o
) . Q. \

Memory

Partition 1

b R L

“.................p.....

0""}""""""""'9

.............
‘............................‘
R B I L R EEEEEEEEEREEEREEEREEREEEEEEE-

..........

ycl
s B
- =
D B
S B
o,

o
-
o
=
 —
X
o

Task

f

O

Ingestion

R

.

Memory
Partition 1

Transform

Partition 2

Partition 2

s " e

Memory

O

Ingestion

1
—
=,
i~
<
Q.

VE " " "™ s mymmmmn-

.............

\J
18

GEIGREN (Pascal) (Blaise) ;
SEGI-a (Voltaire) (Francois).
GEIGKEE (Ferrin) (Jean Georges) .
GG (Marechal) (Plerre Sylvain) E
).

!

)

CSV
File

SEPVGICE (Karau) (Holden
SEPIGE (Zaharia) (Matel
Record 7 HEB) (..

R EEEEEEEEEEEEEEs

: Memory M emory
Partition 1
Partition 2 B
'"..Qf ’ String dbConnectionUrl = "jdbc:postgresql://localhost/spark_labs";
4 N 4 h Properties prop = new Properties();
Task Task prop.setProperty("driver", "org.postgresql.Driver");
. . prop.setProperty("user", "jagp");
. J - ~ prop.setProperty("password", "Spark<3Java");

[Ingosl.on

[@f@

IHL.C‘S on

ﬂ»ﬂ

f df.write()
5 .mode(SaveMode.Overwrite)

Ingestion Ingestion
RLIgP @»0

i Partition 1
Rec 1
Rec 2

.jdbc(dbConnectionUrl, "ch@2", prop);

Partition 2 [

Rec 6
Rec 7

‘-----

19

10N

Iterative Machine Learning Applications

Implemented logistic regression and k-means to compare performance of
Hadoop, HadoopBinMem and Spark

Both algorithms were run for 10 iterations on 100GB datasets using
25-100 machines.

Key difference between logistic regression and k-means is the amount of
computation performed per byte of data

Logistic regression is less compute intensive compared to k-means and
requires more time in deserialization and I/O

20

Iteration time (s)
N
o

Evaluation (contd..)

Iterative Machine Learning Applications

First lteration

H 139

(qV|
o0
u | ater lterations 'I_

O
0 N~ qV
S O ©
<
. m

Hadoop HadoopBM Spark

Logistic Regression

Hadoop HadoopBM Spark

K-Means

-
300 - " Hadoop 300 1 5 “Hadoop
HadoopBinMem - HadoopBinMem
=250 - < ® Spark »250 | B ®Spark
S 200] 5 0 z
£ 200 co g
= 150 | B+~ -
o | NI S © :
-§ 100 x ~ o
2 5 | © II
©)
0 - . , . .
25 50 100 25 50 100
Number of machines Number of machines
(a) Logistic Regression (b) K-Means

21

Compares running times for 10
iterations of k-means on a 75
node cluster

400 tasks working on 1T00GB
data per iteration

One node fails in the 6th
Iiteration

RDD was re-created with input
data and lineage

Average time resumes to be
58s from the next iteration

Iteratrion ti

£ 100

119

56

valuation (Contd..)

Fault Recovery for K-means application

Failure happens

\

58 58

81

57

59

57

59

22

Iteratlon

Evaluation (Contd..)
Page Rank

1. Start each page with arank of 1
2. On each iteration, update each page’s rank to

)3 rank. / |neighbors |

i€ neighbors

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

1inks
ranks

for (1 <= 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.s1ze))
}.reduceByKey(_ + _)

}

23

Evaluation (Contd..)

Page Rank

Links | | Ranks,
_(url, neighbors) ~ (url, rank)

l join

~ Contribs,
l reduce

~ Contribs,
l reduce
Ranks,

2

Tinks & ranks repeatedly joined

Can co-partition them (e.g. hash
both on URL) to avoid shuffles

Can also use app knowledge,
e.qg., hash on DNS name

Tinks = 1inks.partitionBy(
new URLPartitioner())

24

Time per iteration (s)

Evaluation (Contd..)
Page Rank

200 1/1
“ Hadoop
150
W Basic Spark
100
- Spark + Controlled
50

Partitioning

o

25

ation (Contd..)

Interactive Data Mining

- Analyze 1TB of Wikipedia page

—
o

, o =~ | ®Exact Match + View Count
view logs(~2years of data) Py Substring Match + View Count ;3
E 8 ®=Total View Count > I
- Used 100 large EC2 instances % 6 <
with 8cores and 68GB RAM each s
L ~ ©
» Ran queries to find total view of: e, ‘f
-
3 i
. all pages 0
100 GB 500 GB
» pages with titles exactly Data size (GB)
matching a given word
« pages with titles partially Querying from disk for 1TB data: 170s &

matching a word

26

1ISION

- RDDs offer a simple and efficient programming model for a broad range of applications

« They are particularly useful for batch processing where they leverage the coarse-
grained nature of many parallel transformations for low-overhead recovery

« Some existing programming models expressible using RDDs:
- MapReduce
« DryadLINQ
« SQL
» Pregel
- Batch Stream Processing

. |terative MapReduce

27

CEeS

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing by Matei Zaharia, Mosharaf Chowdhury, Tathagata
Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott
Shenker, lon Stoica UC, Berkeley

Blog about DAG: https://data-flair.training/blogs/dag-in-apache-spark

Medium Article on RDD basics: https://medium.com ovalsaurabh66
spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454

Official Spark Documentation: https://spark.apache.org/docs/latest/rdd-
programming-guide.htm|

28

https://data-flair.training/blogs/dag-in-apache-spark/
https://medium.com/@goyalsaurabh66/spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454
https://medium.com/@goyalsaurabh66/spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454
https://medium.com/@goyalsaurabh66/spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Thank You

