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What is RDD

• Resilient - meaning, fault tolerant. Can recompute in the event of a 
network partition


• Distributed - meaning, it resides in multiple nodes


• Dataset - meaning, records of data with which programmers will work


• Solves the problem of iterative algorithms and interactive data mining 
tools that current computing frameworks handle inefficiently by keeping 
data in-memory
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Limitations of existing approaches
• Hadoop’s MapReduce simplified “big data” 

analysis by performing parallel computations 
on data while being fault tolerant.


• But, users wanted more. More complex 
iterative algorithms and interactive ad-hoc 
queries


• Hence, specialized frameworks such as 
Pregel and HaLoop were introduced that 
kept intermediate data in-memory.


• But they were narrow focussed and not for 
more general reuse of data. eg) let a user 
load several datasets and run ad-hoc queries 
on the same subset of data


• There was a need for efficient primitives for 
data sharing.
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Challenges
• Existing storage abstractions have interfaces based on fine-grained 

updates to mutable state. For instance, DSM, Piccolo, key-value stores


• Require replicating data or logs across multiple nodes for fault tolerance


• Expensive operations to write large amounts of data or logs


• Limited by network bandwidth


• Much slower compared to memory write
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Solution: RDDs
• Restricted form of DSM


• Immutable and partitioned collection of records


• Can only be built through coarse-grained deterministic transformations


• Uses lineage for efficient fault recovery


• In case of a failure, recompute only the lost partitions


• Can be used to apply the same operation to many items
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Trade-off Space
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RDDs and Spark
• The concept of RDD is implemented in Spark as a language-integrated API


• Dataset is represented as an object and transformations are invoked on 
these objects


• Usable interactively from Scala interpreter


• Provides:


• Operations on RDDs: transformations(create new RDDs) and 
actions(compute and output results on the RDDs)


• Control of each RDD’s partitioning (layout across multiple nodes) and 
persistence (storage in RAM, on disk, etc)
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Implementation
• Implemented Spark in 14000 lines of Scala.


• System runs over Mesos cluster manager and shares resources 
with Hadoop and other applications


• Each Spark application runs as a separate Mesos application with 
its own driver and workers


• Spark can read data from any DFS such as HBase, Hadoop etc. 



partitions() atomic pieces of the dataset

preferredLocations(p) List nodes where partition p can be accessed 
faster

dependencies() set of dependencies on the parent RDD

iterator(p, parentIters)
function for computing the dataset of p 

based on parents


partitioner() Return metadata specifying whether the RDD 
is hash/range partitioned
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Representing RDDs

• RDD can be represented through a common interface that exposes five 
pieces of information:



Types of dependencies
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Lineage & Directed Acyclic Graph (DAG)



Fault Tolerance
• Lineages are key to fault tolerance in Spark


• Three other properties required to deliver fault tolerance:


• Immutability of RDDs


• Usage of higher order functions such as map, filter, flatMap to perform 
functional transformations on this immutable data


• Function for computing the dataset based on parent RDD


• Along with keeping track of dependency information between partitions 
and the three properties mentioned above allow us to recover  from 
failures by recomputing lost partitions from lineage graphs
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Fault Tolerance (Contd..)
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End To End Flow of Data in Spark
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Iterative Machine Learning Applications
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Evaluation

• Implemented logistic regression and k-means to compare performance of 
Hadoop, HadoopBinMem and Spark


• Both algorithms were run for 10  iterations on 100GB datasets using 
25-100 machines.


• Key difference between logistic regression and k-means is the amount of 
computation performed per byte of data


• Logistic regression is less compute intensive compared to k-means and 
requires more time in deserialization and I/O



21

Evaluation (contd..)
Iterative Machine Learning Applications



Evaluation (Contd..)
Fault Recovery for K-means application
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• Compares running times for 10 
iterations of k-means on a 75 
node cluster


• 400 tasks working on 100GB 
data per iteration


• One node fails in the 6th 
iteration


• RDD was re-created with input 
data and lineage


• Average time resumes to be 
58s from the next iteration
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Evaluation (Contd..)
Page Rank
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Evaluation (Contd..)
Page Rank
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Evaluation (Contd..)
Page Rank



Evaluation (Contd..)

• Analyze 1TB of Wikipedia page 
view logs(~2years of data)


• Used 100 large EC2 instances 
with 8cores and 68GB RAM each


• Ran queries to find total view of:


• all pages


• pages with titles exactly 
matching a given word


• pages with titles partially 
matching a word

Interactive Data Mining

Querying from disk for 1TB data: 170s 😐
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Conclusion
• RDDs offer a simple and efficient programming model for a broad range of applications


• They are particularly useful for batch processing where they leverage the coarse-
grained nature of many parallel transformations for low-overhead recovery


• Some existing programming models expressible using RDDs:


• MapReduce


• DryadLINQ


• SQL


• Pregel


• Batch Stream Processing


• Iterative MapReduce
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