Resilient Distributed Datasets A fault tolerant abstraction for in-memory cluster computing

By: Vinod Dalavai Date: Feb 16, 2022 Department of Computer Science Golisano College of Computing and Information Sciences Rochester Institute of Technology, NY

- **Resilient -** meaning, fault tolerant. Can recompute in the event of a network partition
- **Distributed** meaning, it resides in multiple nodes
- **Dataset -** meaning, records of data with which programmers will work

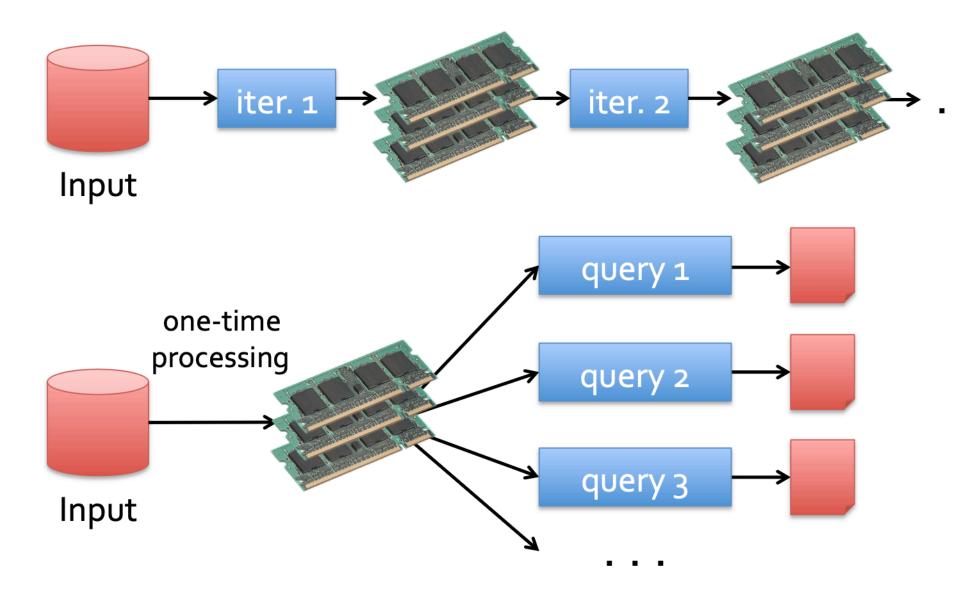
 Solves the problem of iterative algorithms and interactive data mining tools that current computing frameworks handle inefficiently by keeping data in-memory

What is RDD

Limitations of existing approaches

- Hadoop's MapReduce simplified "big data" analysis by performing parallel computations on data while being fault tolerant.
- But, users wanted more. More complex iterative algorithms and interactive ad-hoc queries
- Hence, specialized frameworks such as Pregel and HaLoop were introduced that kept intermediate data in-memory.
- But they were narrow focussed and not for more general reuse of data. eg) let a user load several datasets and run ad-hoc queries on the same subset of data
- There was a need for efficient primitives for data sharing.



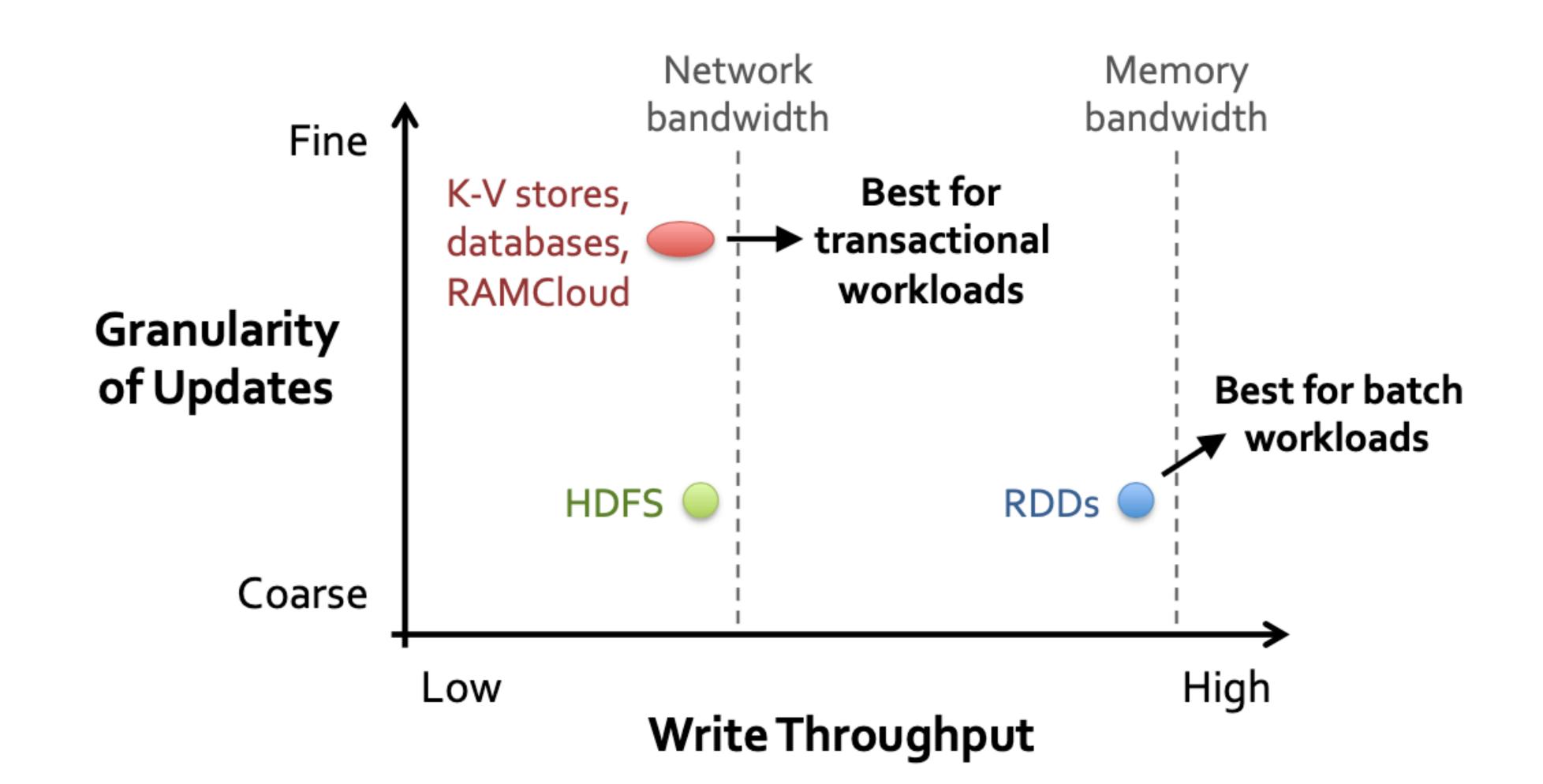


- Existing storage abstractions have interfaces based on fine-grained updates to mutable state. For instance, DSM, Piccolo, key-value stores
- Require replicating data or logs across multiple nodes for fault tolerance
 - Expensive operations to write large amounts of data or logs
 - Limited by network bandwidth
 - Much slower compared to memory write

Solution: RDDs

- Restricted form of DSM
- Immutable and partitioned collection of records
- Can only be built through coarse-grained deterministic transformations
- Uses lineage for efficient fault recovery
- In case of a failure, recompute only the lost partitions
- Can be used to apply the same operation to many items

Trade-off Space



RDDs and Spark

- The concept of RDD is implemented in Spark as a language-integrated API
- Dataset is represented as an object and transformations are invoked on these objects
- Usable interactively from Scala interpreter
- Provides:
 - Operations on RDDs: transformations(create new RDDs) and actions(compute and output results on the RDDs)
 - Control of each RDD's *partitioning* (layout across multiple nodes) and *persistence* (storage in RAM, on disk, etc)

Implementation

- Implemented Spark in 14000 lines of Scala.
- System runs over Mesos cluster manager and shares resources with Hadoop and other applications
- Each Spark application runs as a separate Mesos application with its own driver and workers
- Spark can read data from any DFS such as HBase, Hadoop etc.

pieces of information:

partitions()

preferredLocations(p)

dependencies()

iterator(p, parentIters)

partitioner()

Representing RDDs

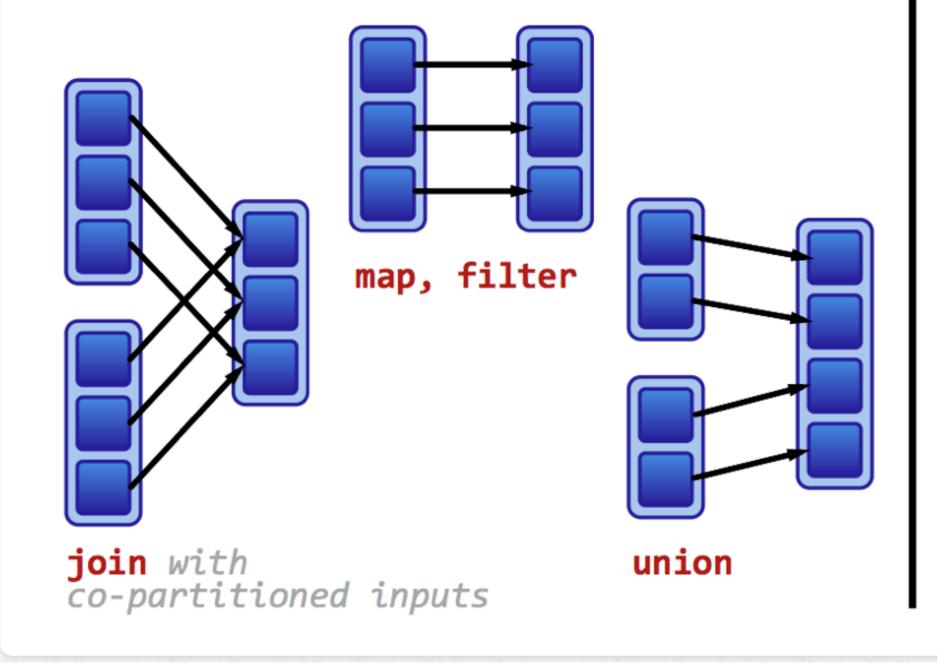
• RDD can be represented through a common interface that exposes five

	atomic pieces of the dataset
	List nodes where partition p can be accessed faster
	set of dependencies on the parent RDD
	function for computing the dataset of p based on parents
	Return metadata specifying whether the RDD is hash/range partitioned

Types of dependencies

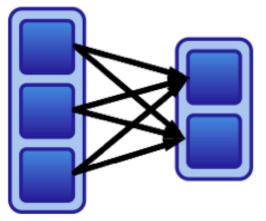
Narrow dependencies:

Each partition of the parent RDD is used by at most one partition of the child RDD.

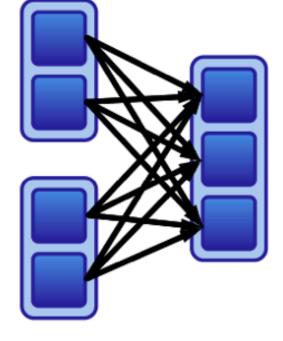


Wide dependencies:

Each partition of the parent RDD may be depended on by multiple child partitions.

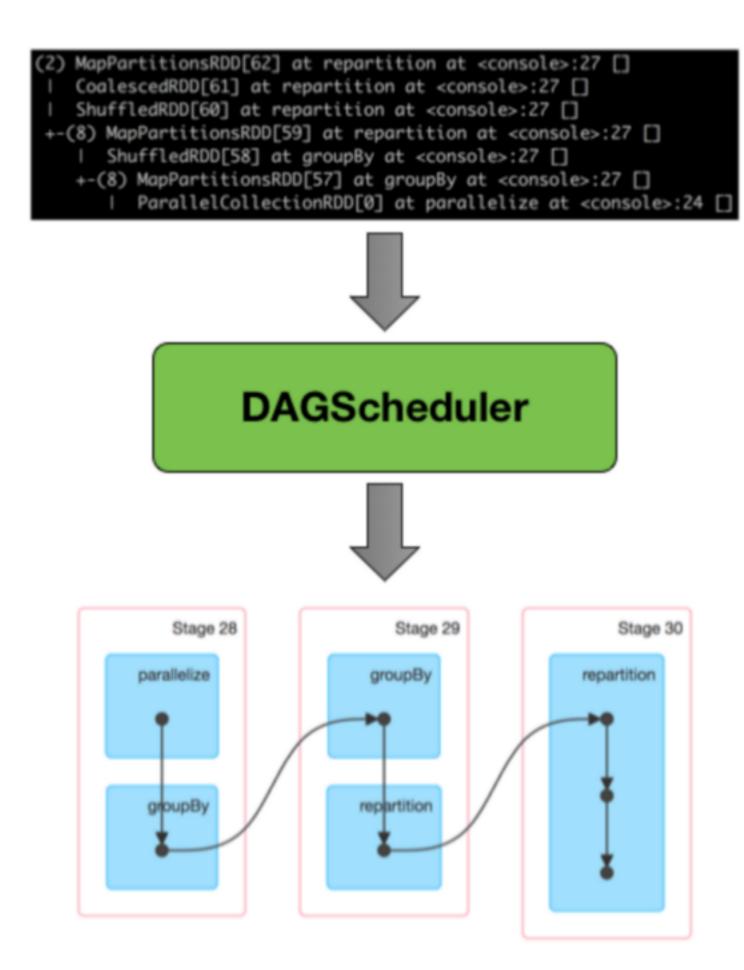


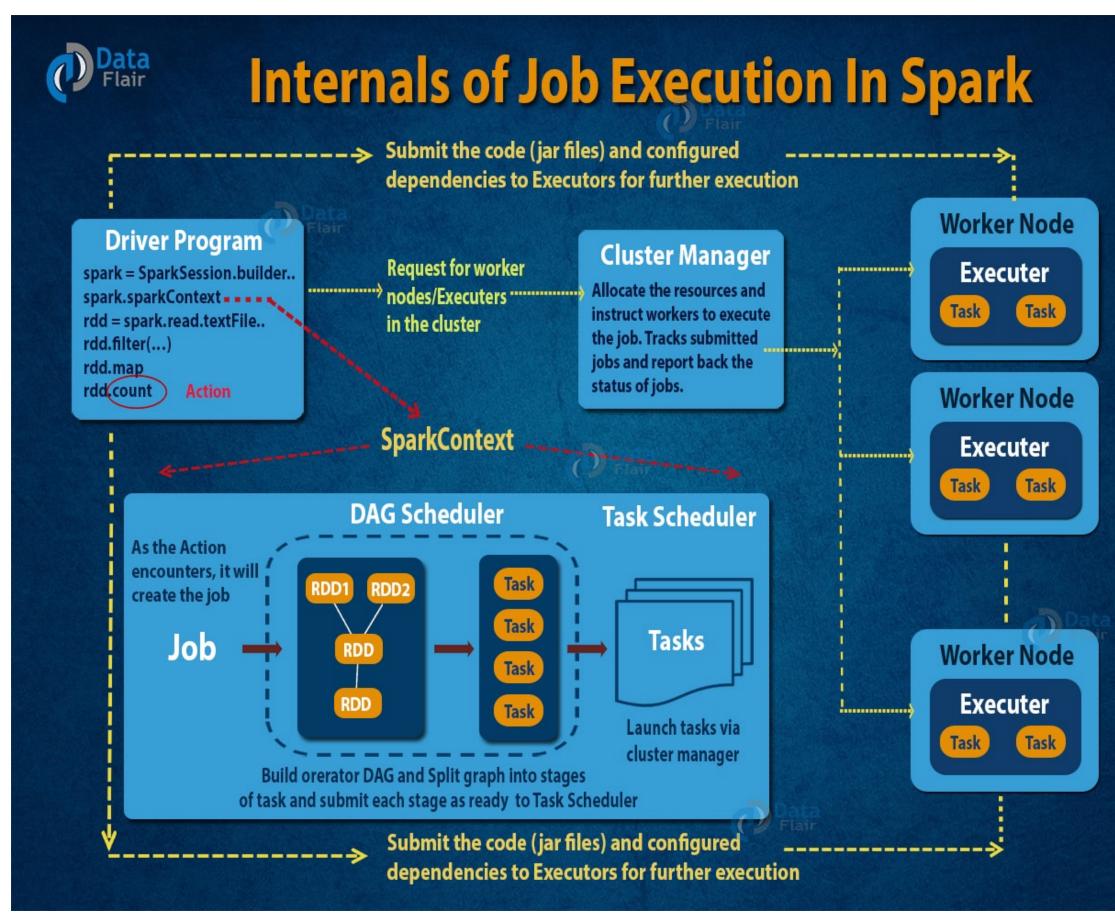
groupByKey



join with inputs not co-partitioned

Lineage & Directed Acyclic Graph (DAG)

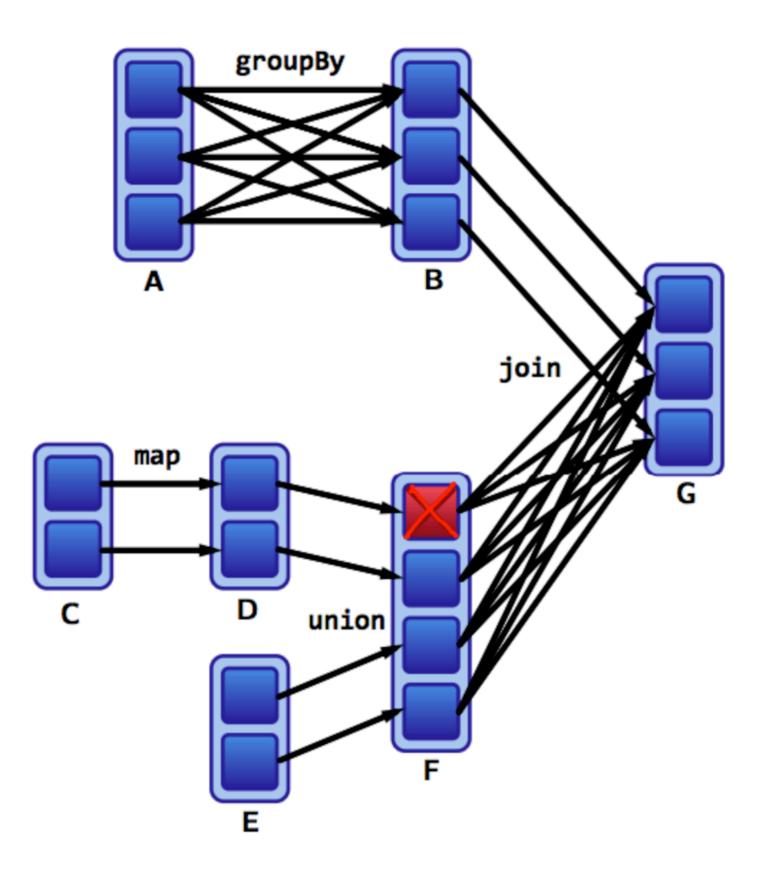


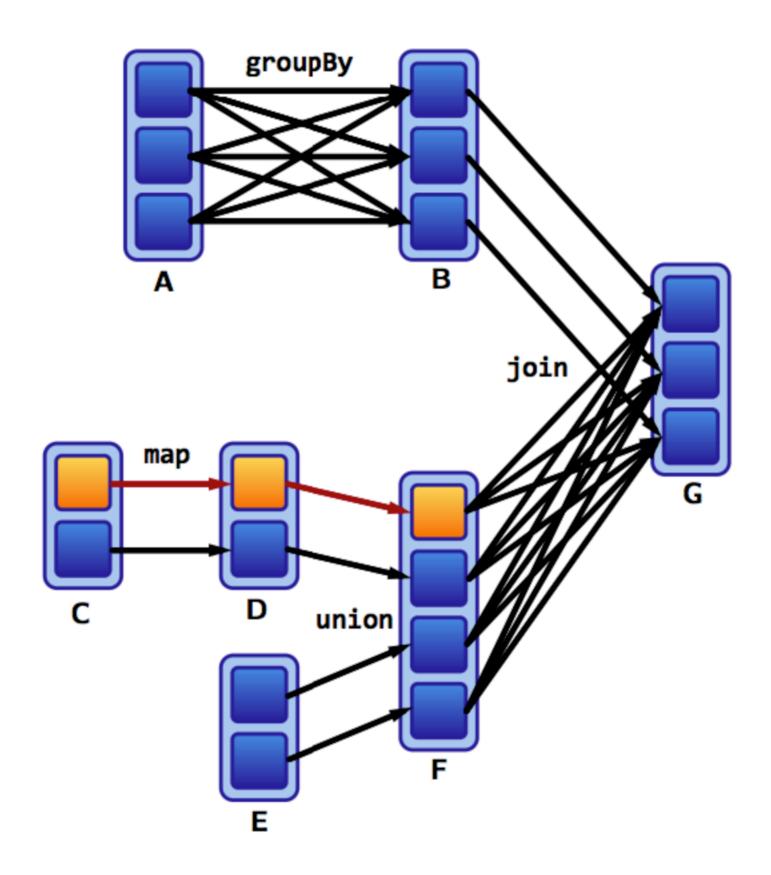


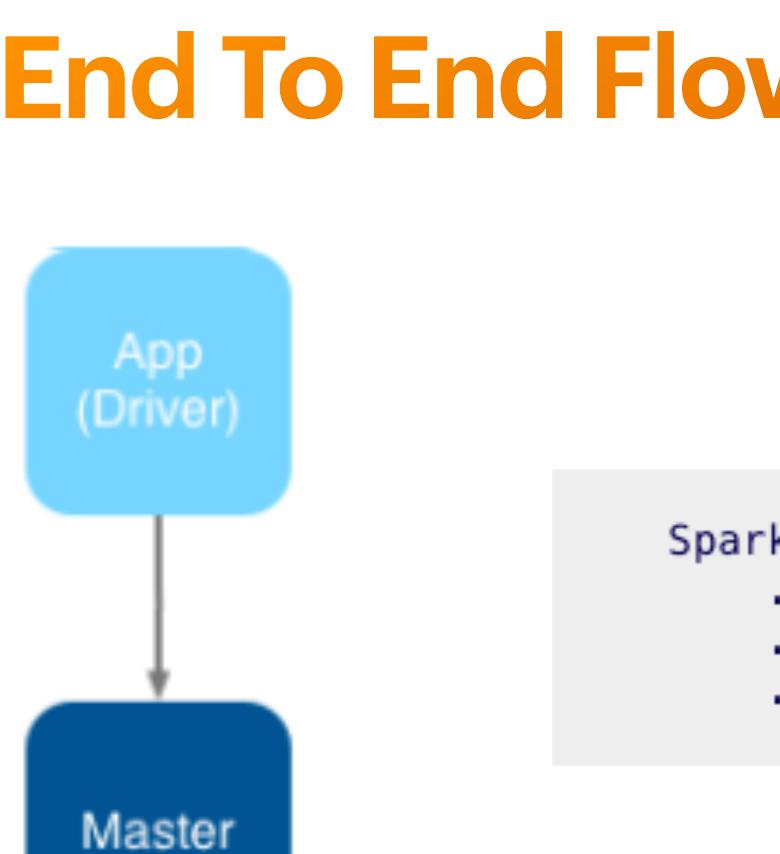
Fault Tolerance

- Lineages are key to fault tolerance in Spark
- Three other properties required to deliver fault tolerance:
 - Immutability of RDDs
 - Usage of higher order functions such as map, filter, flatMap to perform functional transformations on this immutable data
 - Function for computing the dataset based on parent RDD
- Along with keeping track of dependency information between partitions and the three properties mentioned above allow us to recover from failures by recomputing lost partitions from lineage graphs

Fault Tolerance (Contd..)

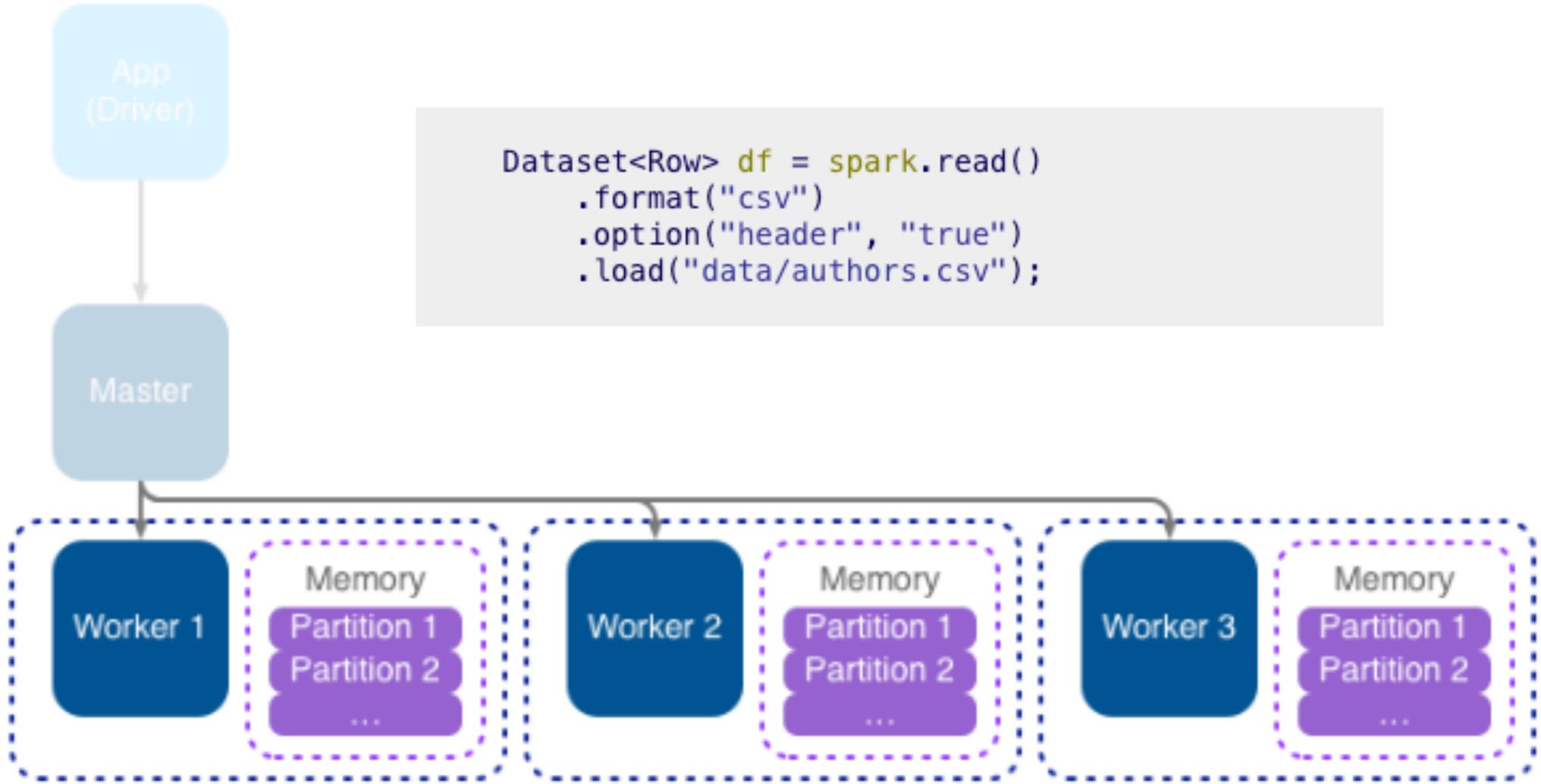


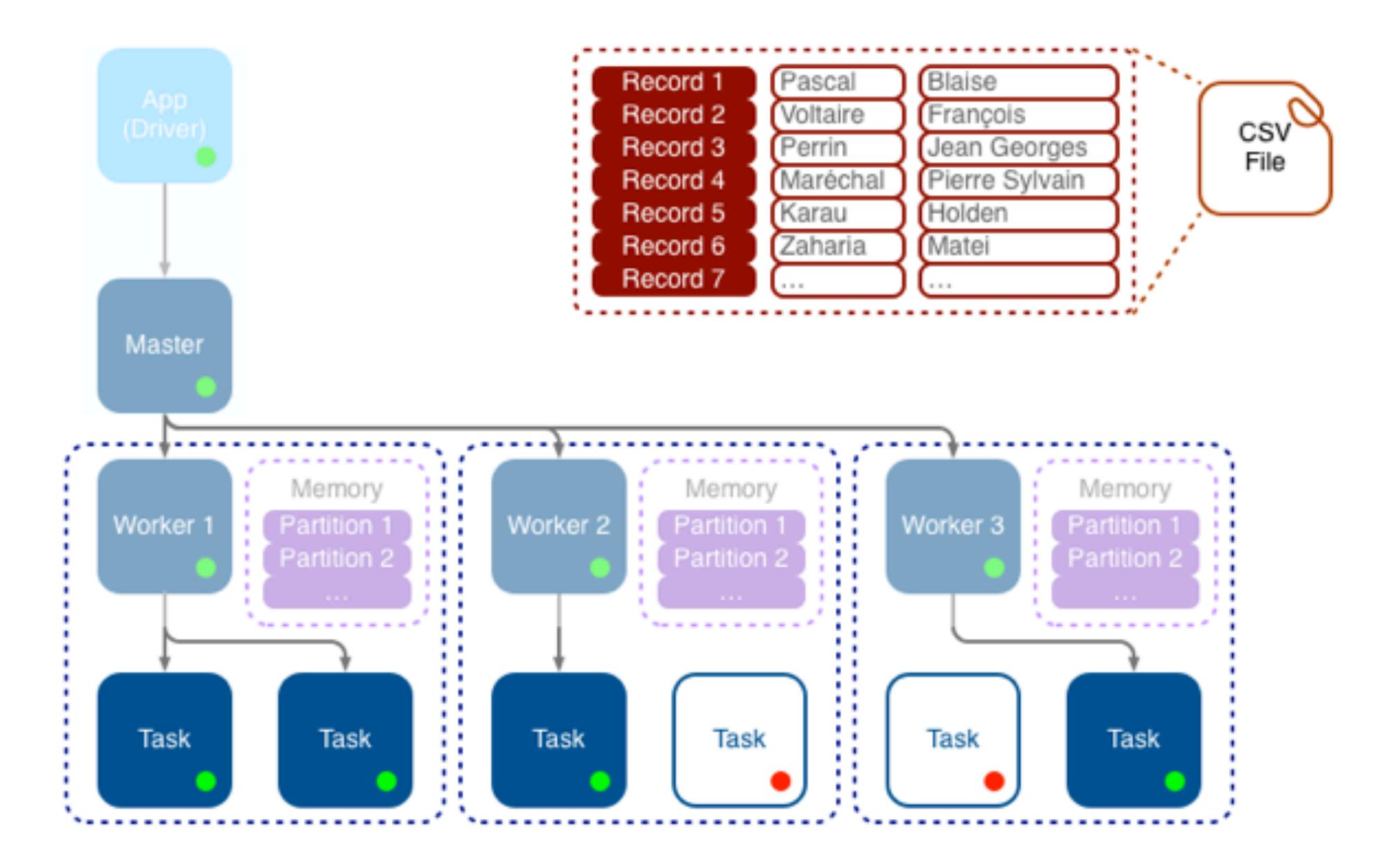


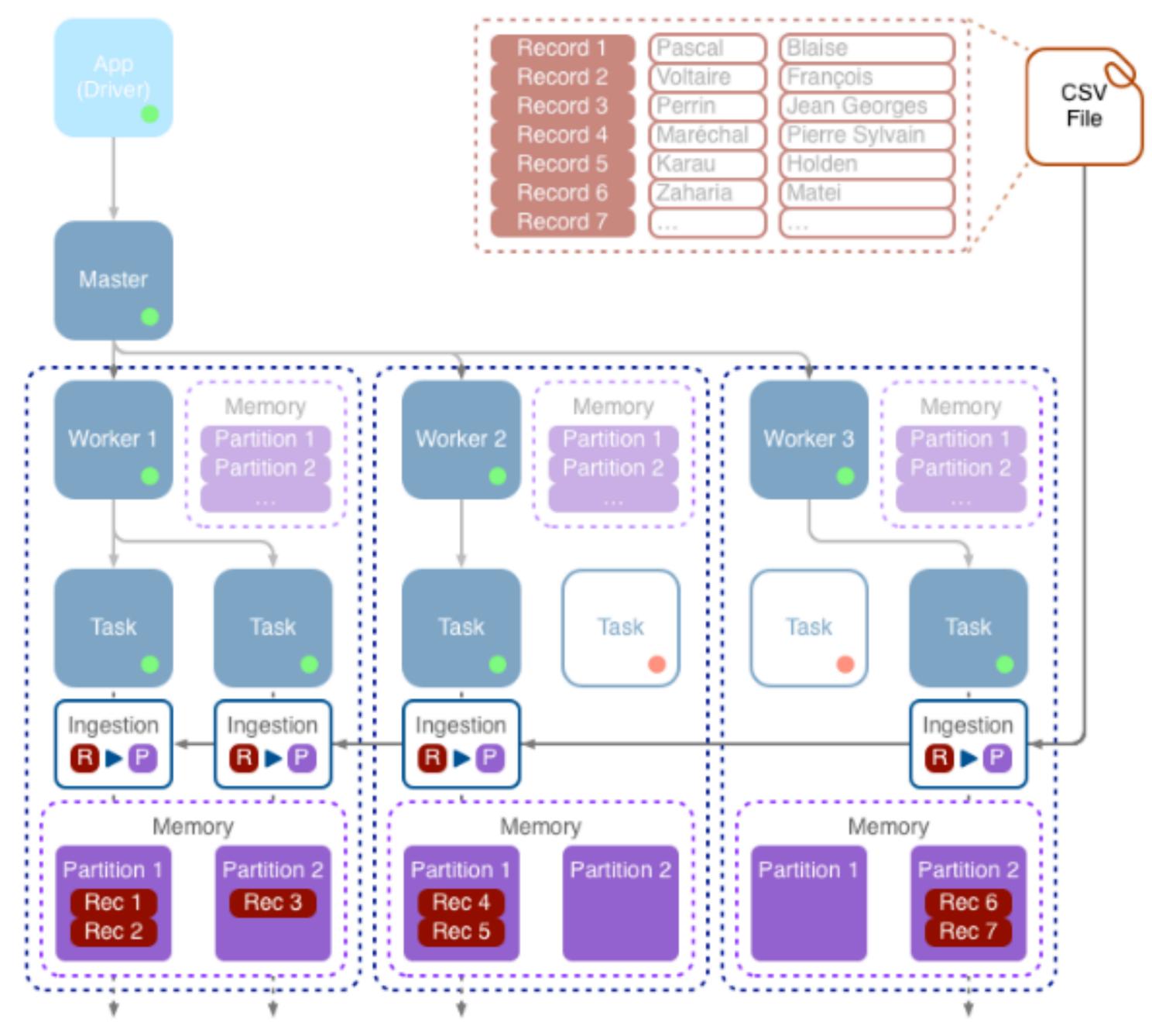


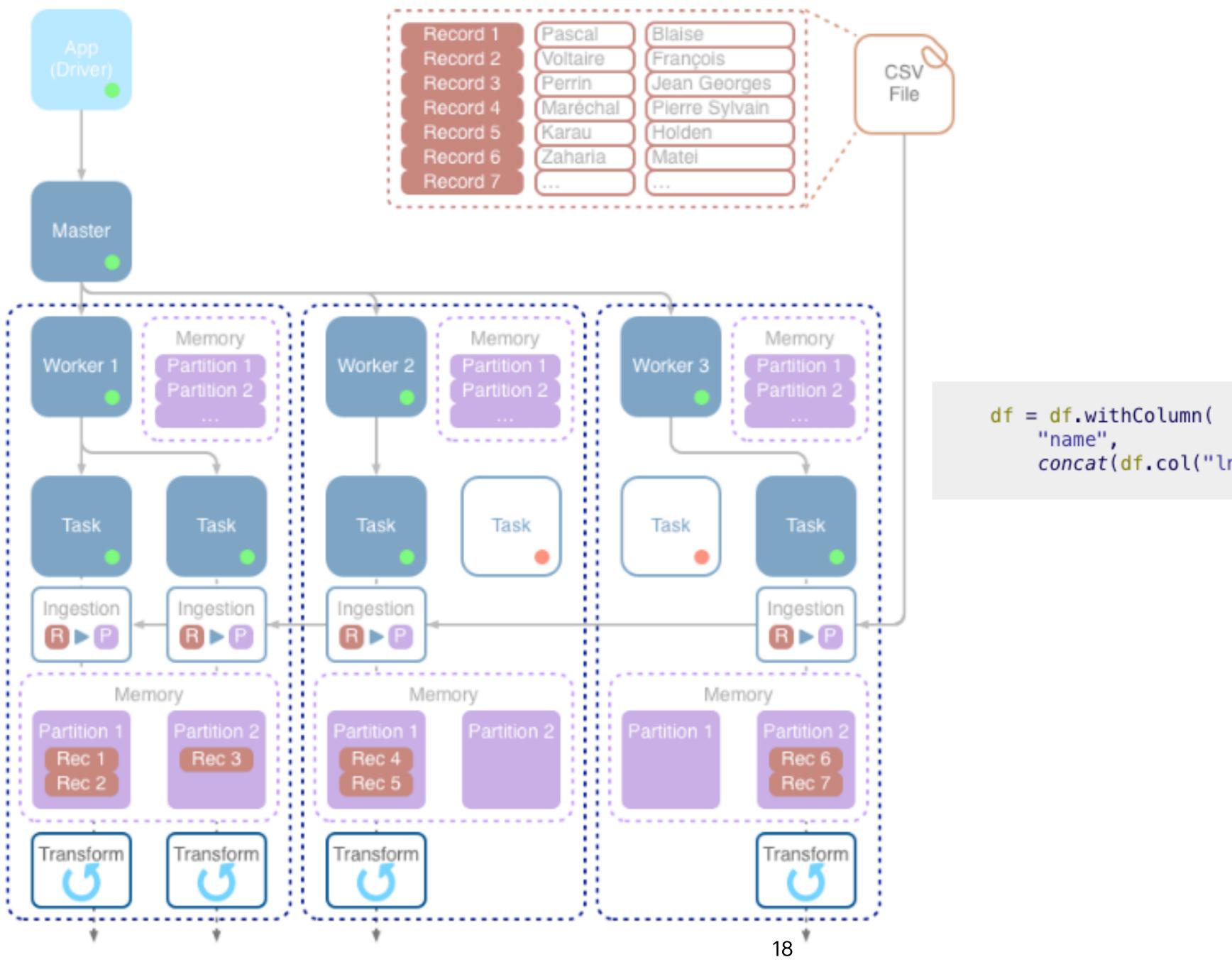
End To End Flow of Data in Spark

```
SparkSession spark = SparkSession.builder()
.appName("CSV to DB")
.master("local")
.getOrCreate();
```

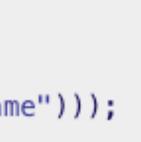


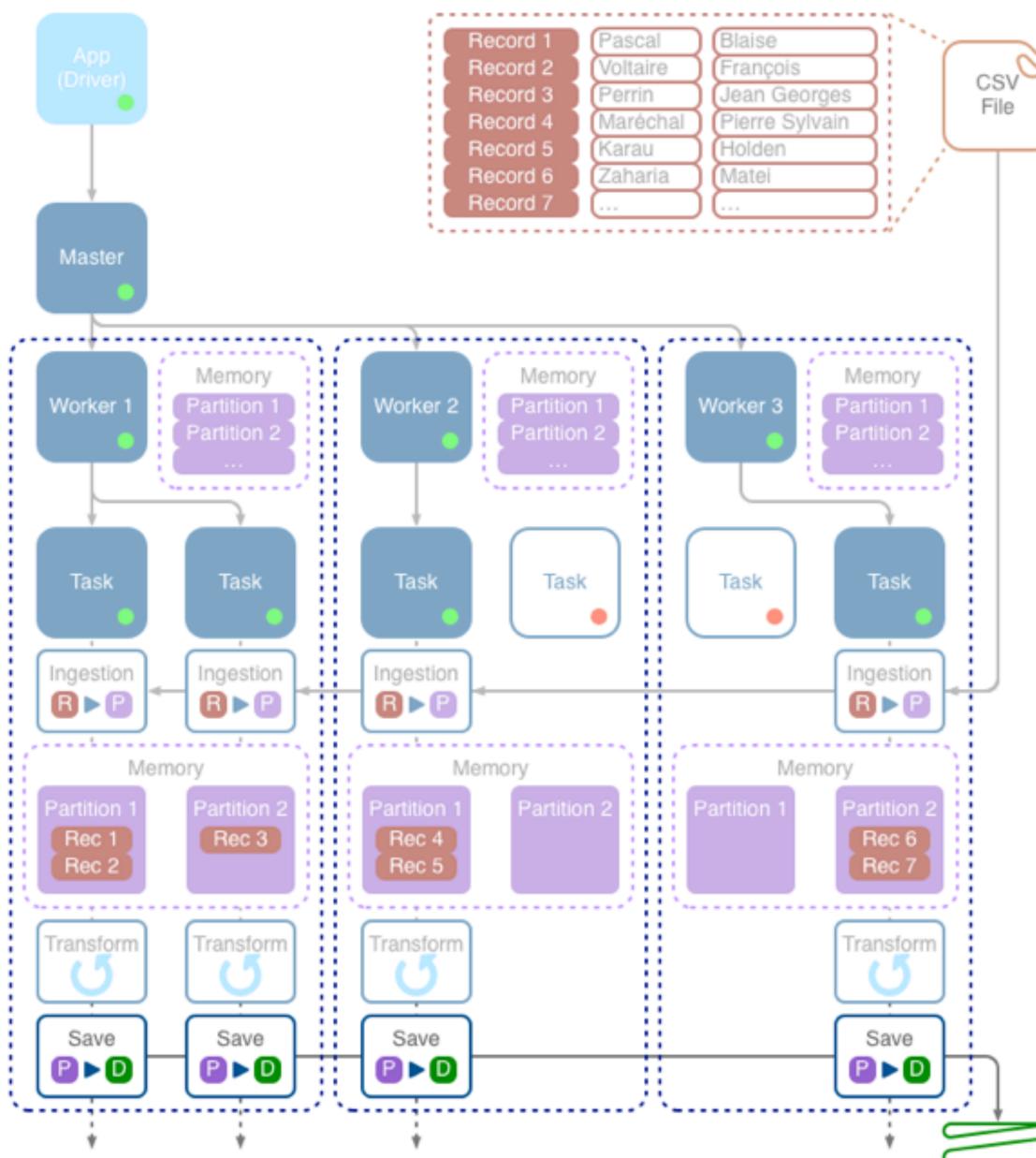




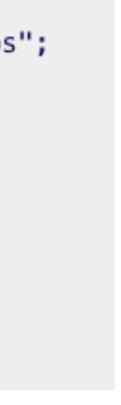


concat(df.col("lname"), lit(", "), df.col("fname")));





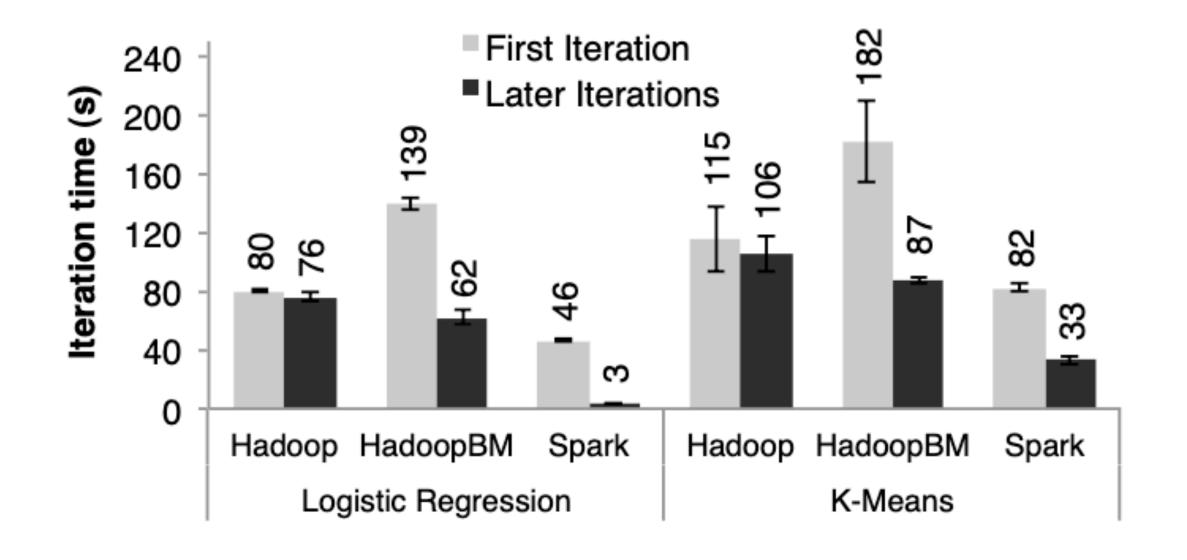

```
String dbConnectionUrl = "jdbc:postgresql://localhost/spark_labs";
Properties prop = new Properties();
prop.setProperty("driver", "org.postgresql.Driver");
prop.setProperty("user", "jgp");
prop.setProperty("password", "Spark<3Java");
df.write()
    .mode(SaveMode.Overwrite)
    .jdbc(dbConnectionUrl, "ch02", prop);</pre>
```

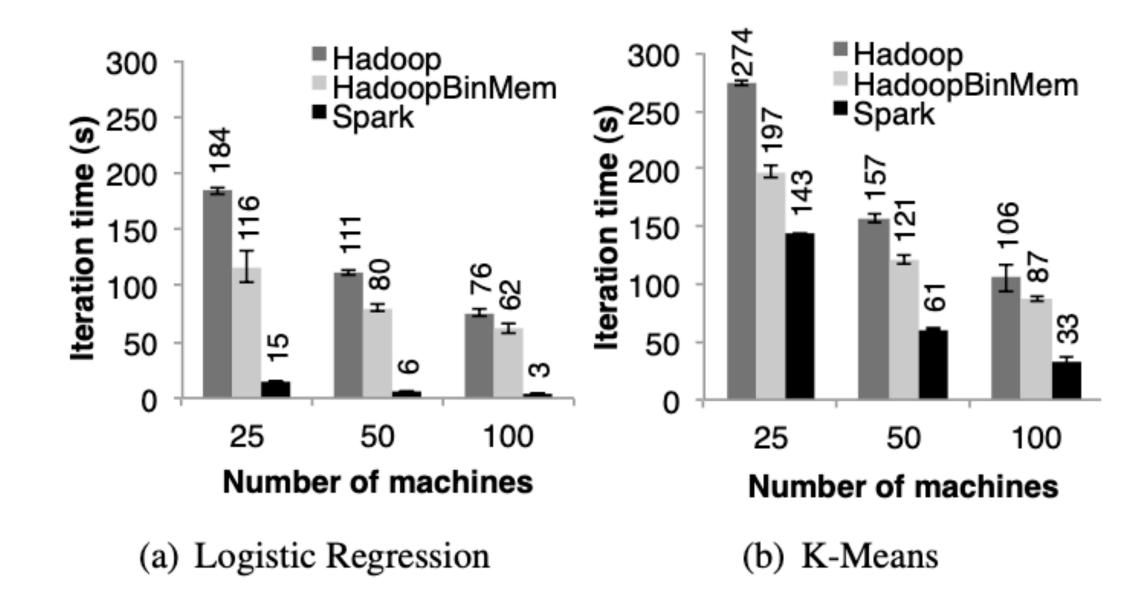


Evaluation Iterative Machine Learning Applications

- Implemented logistic regression and k-means to compare performance of Hadoop, HadoopBinMem and Spark
- Both algorithms were run for 10 iterations on 100GB datasets using 25-100 machines.
- Key difference between logistic regression and k-means is the amount of computation performed per byte of data
- Logistic regression is less compute intensive compared to k-means and requires more time in deserialization and I/O

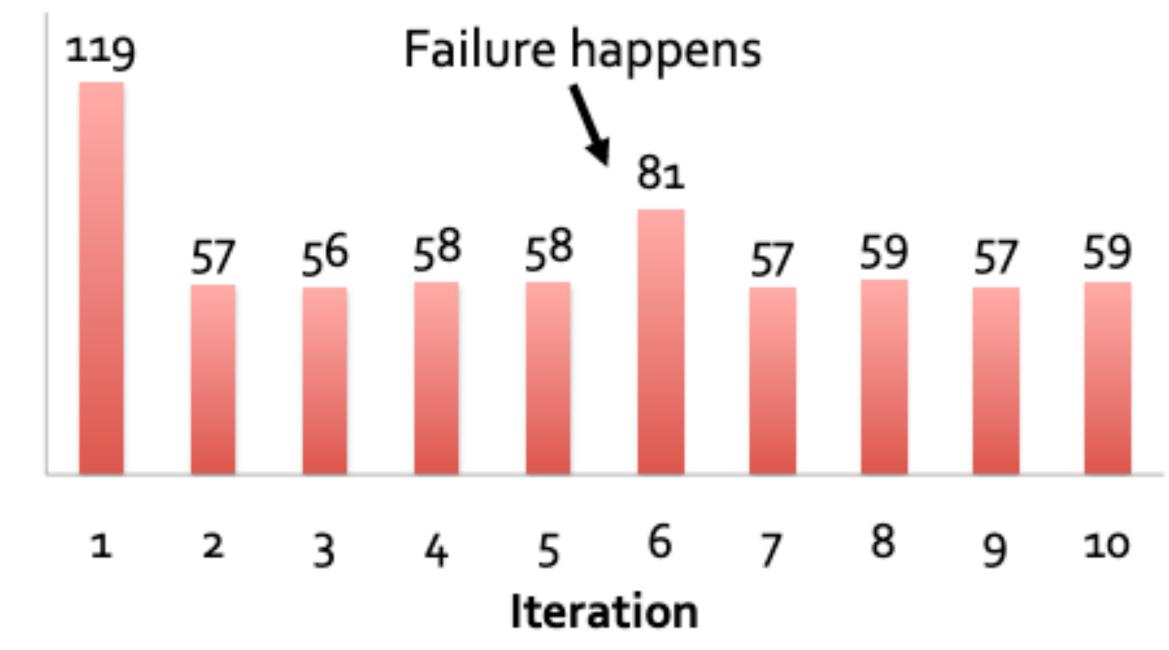
Evaluation (contd..) Iterative Machine Learning Applications





Evaluation (Contd..) Fault Recovery for K-means application

- Compares running times for 10 iterations of k-means on a 75 node cluster
- 400 tasks working on 100GB data per iteration
- One node fails in the 6th iteration
- RDD was re-created with input data and lineage
- Average time resumes to be 58s from the next iteration

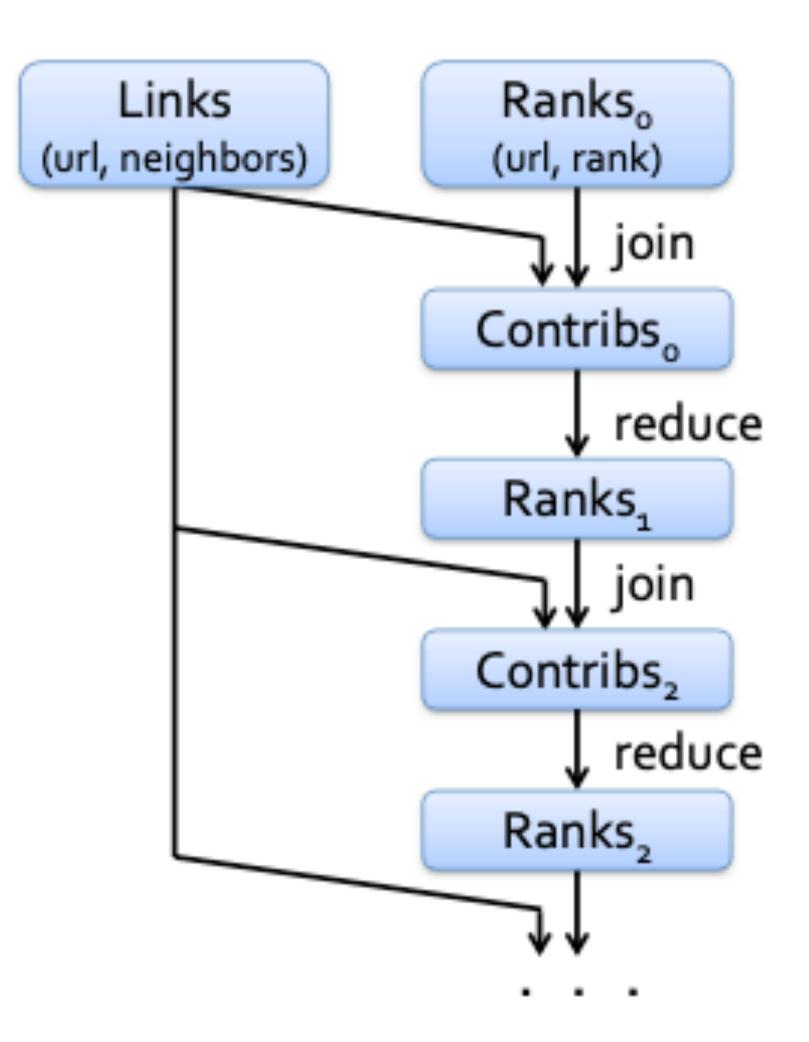


Evaluation (Contd..) Page Rank

- Start each page with a rank of 1 On each iteration, update each page's rank to $\Sigma_{i \in neighbors}$ rank_i / [neighbors_i]

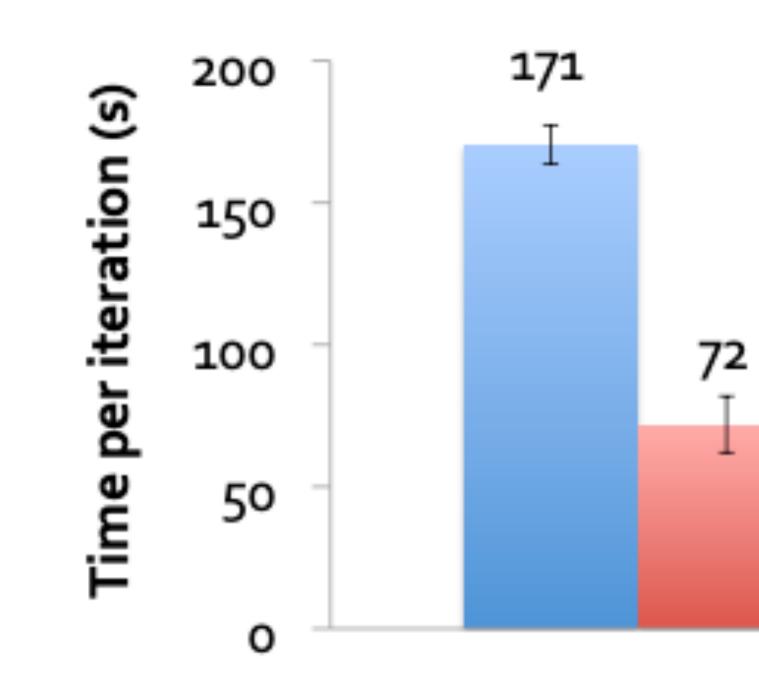
```
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {
 ranks = links.join(ranks).flatMap {
    (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
 }.reduceByKey(_ + _)
```

Evaluation (Contd..) Page Rank



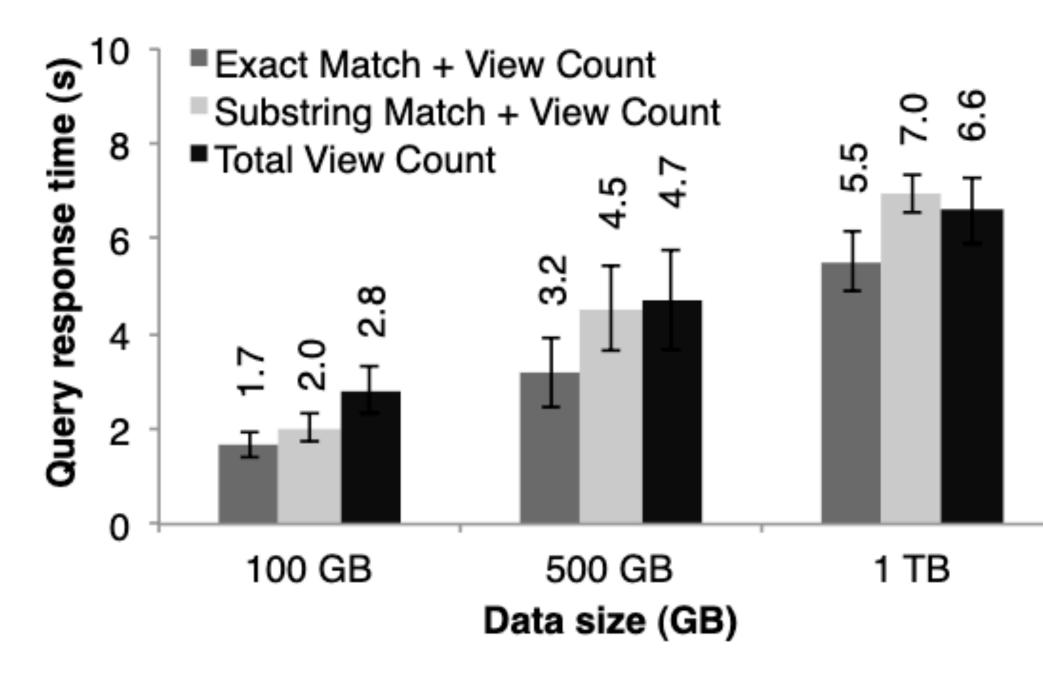
- 1inks & ranks repeatedly joined
- Can co-partition them (e.g. hash both on URL) to avoid shuffles
- Can also use app knowledge, e.g., hash on DNS name

Evaluation (Contd..) Page Rank



- Analyze 1TB of Wikipedia page view logs(~2years of data)
- Used 100 large EC2 instances with 8cores and 68GB RAM each
- Ran queries to find total view of:
 - all pages
 - pages with titles exactly matching a given word
 - pages with titles partially matching a word

Evaluation (Contd..) Interactive Data Mining



Querying from disk for 1TB data: 170s 😐

- RDDs offer a simple and efficient programming model for a broad range of applications
- They are particularly useful for batch processing where they leverage the coarsegrained nature of many parallel transformations for low-overhead recovery
- Some existing programming models expressible using RDDs:
 - MapReduce
 - DryadLINQ
 - SQL
 - Pregel
 - Batch Stream Processing
 - Iterative MapReduce

Conclusion

References

- Shenker, Ion Stoica UC, Berkeley
- <u>spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454</u>
- programming-guide.html

 Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing by Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott

 Blog about DAG: <u>https://data-flair.training/blogs/dag-in-apache-spark/</u> Medium Article on RDD basics: <u>https://medium.com/@goyalsaurabh66/</u>

Official Spark Documentation: <u>https://spark.apache.org/docs/latest/rdd-</u>

