
By: Vinod Dalavai

Date: Feb 16, 2022

1

Resilient Distributed Datasets
A fault tolerant abstraction for in-memory cluster

computing

Department of Computer Science

Golisano College of Computing and Information Sciences

Rochester Institute of Technology, NY

2

What is RDD

• Resilient - meaning, fault tolerant. Can recompute in the event of a
network partition

• Distributed - meaning, it resides in multiple nodes

• Dataset - meaning, records of data with which programmers will work

• Solves the problem of iterative algorithms and interactive data mining
tools that current computing frameworks handle inefficiently by keeping
data in-memory

3

Limitations of existing approaches
• Hadoop’s MapReduce simplified “big data”

analysis by performing parallel computations
on data while being fault tolerant.

• But, users wanted more. More complex
iterative algorithms and interactive ad-hoc
queries

• Hence, specialized frameworks such as
Pregel and HaLoop were introduced that
kept intermediate data in-memory.

• But they were narrow focussed and not for
more general reuse of data. eg) let a user
load several datasets and run ad-hoc queries
on the same subset of data

• There was a need for efficient primitives for
data sharing.

4

Challenges
• Existing storage abstractions have interfaces based on fine-grained

updates to mutable state. For instance, DSM, Piccolo, key-value stores

• Require replicating data or logs across multiple nodes for fault tolerance

• Expensive operations to write large amounts of data or logs

• Limited by network bandwidth

• Much slower compared to memory write

5

Solution: RDDs
• Restricted form of DSM

• Immutable and partitioned collection of records

• Can only be built through coarse-grained deterministic transformations

• Uses lineage for efficient fault recovery

• In case of a failure, recompute only the lost partitions

• Can be used to apply the same operation to many items

6

Trade-off Space

7

RDDs and Spark
• The concept of RDD is implemented in Spark as a language-integrated API

• Dataset is represented as an object and transformations are invoked on
these objects

• Usable interactively from Scala interpreter

• Provides:

• Operations on RDDs: transformations(create new RDDs) and
actions(compute and output results on the RDDs)

• Control of each RDD’s partitioning (layout across multiple nodes) and
persistence (storage in RAM, on disk, etc)

8

Implementation
• Implemented Spark in 14000 lines of Scala.

• System runs over Mesos cluster manager and shares resources
with Hadoop and other applications

• Each Spark application runs as a separate Mesos application with
its own driver and workers

• Spark can read data from any DFS such as HBase, Hadoop etc.

partitions() atomic pieces of the dataset

preferredLocations(p) List nodes where partition p can be accessed
faster

dependencies() set of dependencies on the parent RDD

iterator(p, parentIters)
function for computing the dataset of p

based on parents

partitioner() Return metadata specifying whether the RDD
is hash/range partitioned

9

Representing RDDs

• RDD can be represented through a common interface that exposes five
pieces of information:

Types of dependencies

10

11

Lineage & Directed Acyclic Graph (DAG)

Fault Tolerance
• Lineages are key to fault tolerance in Spark

• Three other properties required to deliver fault tolerance:

• Immutability of RDDs

• Usage of higher order functions such as map, filter, flatMap to perform
functional transformations on this immutable data

• Function for computing the dataset based on parent RDD

• Along with keeping track of dependency information between partitions
and the three properties mentioned above allow us to recover from
failures by recomputing lost partitions from lineage graphs

12

Fault Tolerance (Contd..)

13

14

End To End Flow of Data in Spark

15

16

17

18

19

Iterative Machine Learning Applications

20

Evaluation

• Implemented logistic regression and k-means to compare performance of
Hadoop, HadoopBinMem and Spark

• Both algorithms were run for 10 iterations on 100GB datasets using
25-100 machines.

• Key difference between logistic regression and k-means is the amount of
computation performed per byte of data

• Logistic regression is less compute intensive compared to k-means and
requires more time in deserialization and I/O

21

Evaluation (contd..)
Iterative Machine Learning Applications

Evaluation (Contd..)
Fault Recovery for K-means application

22

• Compares running times for 10
iterations of k-means on a 75
node cluster

• 400 tasks working on 100GB
data per iteration

• One node fails in the 6th
iteration

• RDD was re-created with input
data and lineage

• Average time resumes to be
58s from the next iteration

23

Evaluation (Contd..)
Page Rank

24

Evaluation (Contd..)
Page Rank

25

Evaluation (Contd..)
Page Rank

Evaluation (Contd..)

• Analyze 1TB of Wikipedia page
view logs(~2years of data)

• Used 100 large EC2 instances
with 8cores and 68GB RAM each

• Ran queries to find total view of:

• all pages

• pages with titles exactly
matching a given word

• pages with titles partially
matching a word

Interactive Data Mining

Querying from disk for 1TB data: 170s 😐

26

27

Conclusion
• RDDs offer a simple and efficient programming model for a broad range of applications

• They are particularly useful for batch processing where they leverage the coarse-
grained nature of many parallel transformations for low-overhead recovery

• Some existing programming models expressible using RDDs:

• MapReduce

• DryadLINQ

• SQL

• Pregel

• Batch Stream Processing

• Iterative MapReduce

References
• Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Computing by Matei Zaharia, Mosharaf Chowdhury, Tathagata
Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott
Shenker, Ion Stoica UC, Berkeley

• Blog about DAG: https://data-flair.training/blogs/dag-in-apache-spark/

• Medium Article on RDD basics: https://medium.com/@goyalsaurabh66/
spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454

• Official Spark Documentation: https://spark.apache.org/docs/latest/rdd-
programming-guide.html

28

https://data-flair.training/blogs/dag-in-apache-spark/
https://medium.com/@goyalsaurabh66/spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454
https://medium.com/@goyalsaurabh66/spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454
https://medium.com/@goyalsaurabh66/spark-basics-rdds-stages-tasks-and-dag-8da0f52f0454
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Thank You

29

